
Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

174

Graphs

23 Graphs
23.1 Introduction

One of the most important modeling tools in computing is the graph, which is informally understood
as a collection of points connected by lines. Graphs are used to model networks, processes, relationships
between entities, and so on—almost every picture we draw in computer science is a graph of one sort
or another. In this chapter we present the graph abstract data type and consider two data structures for
representing graphs. In the next chapter we study a few graph algorithms.

23.2 Directed and Undirected Graphs

We defined a graph in the course of discussing trees in Chapter 16.

Graph: A collection of vertices (or nodes) and edges connecting the nodes. An edge may be
thought of as a pair of vertices. Formally, a graph is an ordered pair <V,E> where V is a set of
vertices and E is a set of pairs of elements of V.

Undirected graph: A graph in which the edges are sets of two vertices. In this case the edges
have no direction and are represented by line segments in pictures.

Directed graph or digraph: A graph in which the edges are ordered pairs of vertices. In this
case the edges have direction and are represented by arrows.

To illustrate these definitions, consider the images of graphs in Figure 1.

 Figure 1: Two Graphs

In these images the vertices are identified by circled numbers. In general we may use any symbol
to identify vertices, but as a rule we will use an initial set of natural numbers (that is, any set {0, 1,
2, … n}, where n ≥ 0). The graph on the left is an undirected graph so its edges have no arrows. In its
set representation, this graph is

<{0, 1, 2, 3, 4}, {{0,1}, {0,2}, {1,2}, {1,4}, {2,4}, {2,3}}>.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

175

Graphs

The graph on the right is a directed graph, so it has arrows on its edges. Note that this allows edges from
a node to itself (such as the edge from 4 to itself), and two distinct edges between a pair of vertices (such
as the two edges connecting vertices 1 and 2); neither of these can occur in an undirected graph. The
set representation of the right-hand graph is

<{0, 1, 2, 3, 4}, {<1,0>, <1,2>, <2,0>, <2,1>, <2,3>, <3,4>, <4,4>, <5,1>}>.

Note that the edge set in the left-hand graph is a set of sets while the edge set in the right-hand graph
is a set of ordered pairs.

Although a graph is really an ordered pair of sets, representing graphs this way is awkward and hard to
read, as the examples above illustrate. Consequently we will almost always represent graphs as pictures.

Both undirected and directed graphs are very important and widely applicable in computer science, but
we will focus for the remainder of our discussion on undirected graphs. From now on we will refer to
undirected graphs as simply graphs.

23.3 Basic Terminology

There are several additional terms that must be learned to talk about graphs.

Adjacency: Vertices v1 and v2 in a graph G=<V, E> such that {v1, v2} ∈ E.

In Figure 2 below, vertices 0 and 1 and vertices 7 and 4 are adjacent, but vertices 0 and 4 and vertices
1 and 3 are not adjacent.

 Figure 2: A Graph

Path: A sequence of vertices p = <v1, v2, …, vn> in a graph where n ≥ 2 and every pair of
vertices vi and vi+1 in p are adjacent.

Path length: The number of edges in a path.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

176

Graphs

In Figure 2, the paths <0, 2, 3> and <4, 7, 8> both have length two.

Cycle: A path <v1, v2, …, vn> in which v1 = vn.

Simple cycle: A cycle with no repeated edges or vertices (except the first and the last).

In Figure 2, the path <4, 7, 8, 4> is a simple cycle, while the path <4, 7, 8, 7, 4> is a cycle, but not a
simple cycle.

Sub-graph: A graph H=<W, F> is a sub-graph of graph G=<V, E> if W ⊆ V and F ⊆ E.

Connected vertices: Two vertices with a path between them.

Connected graph: A graph with a path between every pair of vertices. A graph that is not
connected consists of a set of connected components that are sub-graphs of the graph.

Figure 2 shows a single graph with three connected components. Each of these components is a sub-
graph of the whole graph.

Acyclic graph: A graph with no cycles.

ENGINEERS, UNIVERSITY
GRADUATES & SALES
PROFESSIONALS
Junior and experienced F/M

Total will hire 10,000 people in 2014.
Why not you?

Are you looking for work in
process, electrical or other types of
engineering, R&D, sales & marketing
or support professions such as
information technology?

We’re interested in your skills.

Join an international leader in the
oil, gas and chemical industry by
applying at

www.careers.total.com
More than 700 job
openings are now online!

Potential
for development

C
op

yr
ig

ht
 :

To
ta

l/C
or

bi
s

for development

Potential
for exploration

http://bookboon.com/
http://bookboon.com/count/advert/f512d1dd-ebe8-4036-b221-a2f500bd9ae3

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

177

Graphs

The graph in Figure 2 is not acyclic, but the sub-graph consisting of the vertices 0, 1, 2, and 3 and the
edges that connect them, and the sub-graph consisting of vertices 5 and 6 and the edge that connects
them, are acyclic graphs.

Tree: An acyclic connected graph.

Forest: A set of trees with no vertices in common.

Spanning tree: Any sub-graph of a connected graph G that is a tree and contains every vertex
of G.

Figure 3 shows a graph with a spanning tree outlined in grey.

 Figure 3: A Graph and A Spanning Tree

23.4 The Graph ADT

A graph is a mathematical entity consisting of an ordered pair of sets. Vertices can be anything; for
example, they could be numbers. Hence we can specify the carrier set of the graph ADT as the set
of all sets that meet the definition of a graph stated above, with initial sets of natural numbers acting
as vertices. The method set of the graph ADT consists of a few basic operations for constructing and
querying graphs. We could include operations for adding and deleting vertices and deleting edges, as
well as several other query operations, but they are not necessary for the applications we will consider.

newGraph(n)—Return a graph with n vertices and no edges. The precondition of this operation
is that n ≥ 0.

edges(g)—Return the number of edges in graph g.

vertices(g)—Return the number of vertices in graph g.

addEdge(g,v,w)—Return a graph just like g except it has an edge connecting v and w. The
precondition is that v and w are distinct vertices in g.

edge?(g,v,w)—Return true if and only if there is an edge between vertices v and w in g.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

178

Graphs

23.5 The Graph Class

The Graph class is an interface for the graph ADT. It also implements counters for the number of vertices
and edges and query functions on these attributes because these are common to all implementations
of graphs. A graph is not a collection so the Graph class is not a sub-class of any other. For the same
reason, it does include the Enumerable interface. However, it is very convenient to be able to iterate
over the vertices adjacent to a given vertex so the Graph class does include a special edge iterator. This
class appears in Figure 4.

 Figure 4: The Graph Interface

The operation each_edge() is an internal iterator that yields each of the edges connected to v as
the pair of vertices v, w, where w is an adjacent vertex. There is no need for an iterator over the
vertices in the graph because we know that they are (represented by) the integers between 0 and
vertices()-1.

23.6 Contiguous Implementation of the Graph ADT

A contiguous implementation of the graph ADT represents a graph using an array. An initial set of
natural numbers already represents vertices, so the only thing left to represent is the set of edges. An
adjacency matrix m is an n × n Boolean matrix that represents a graph with n vertices by storing true at
location m[v,w] if and only if there is an edge between v and w. Notice that this means that every edge
is represented twice in the matrix. This approach is realized in an ArrayGraph class.

This scheme is very simple and very fast: adding an edge to a graph or detecting whether an edge exists
between two vertices are both O(1) operations, and iterating over the vertices adjacent to a vertex v takes
time proportional to the number of vertices adjacent to v. Unfortunately, this speed comes at great cost
because the matrix requires n2 storage locations. Most graphs are sparse, meaning they have far fewer
than n2 edges, so often most of this storage space is wasted. Even if a list is dense (the opposite of sparse),
then space can be saved by storing the edges that are not in the graph, so in either case, the adjacency
matrix representation does make efficient use of space.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

179

Graphs

23.7 Linked Implementation of the Graph ADT

A linked implementation of the graph ADT represents graphs by using space only for the edges in the
graph. An adjacency list is a linked list of vertices adjacent to a given vertex. An array of adjacency
lists holds all the edges in a graph. The diagram in Figure 5 shows the adjacency lists representation of
the graph in Figure 2. Note that the array holds list headers and the adjacency lists are singly-linked.

 Figure 5: An Adjacency Lists Representation of a Graph

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

180

Graphs

Notice that the adjacency lists representation, like the adjacency matrix representation, records every
edge {v, w} twice: once on the list for the edges of v and once on the list for the edges of w. This approach
is implemented in a LinkedGraph class.

The adjacency lists data structure uses space proportional to the sum of the number of vertices and
edges (the array has space for every vertex, and there are twice as many nodes in the linked lists as
there are edges in the graph). This is typically much less than the space required for the adjacency
matrix representation. Also, adding an edge takes O(1) time and determining whether there is an
edge between two vertices takes time proportional to the number of edges emanating from (one
of) the vertices; this is O(e) (where e is the number of edges in the graph) in the worst case, but
typically it is much less. Thus the adjacency lists representation uses relatively little space but is still
quite efficient.

It is convenient to use a the linked list from our Container hierarchy to realize each adjacency list.
The adjacent array then holds linked lists implementing the List interface rather than pointers to
nodes.

23.8 Summary and Conclusion

Graphs are an important modeling tool in computing. The graph ADT provides a few operations for
building and querying a graph and this is carried over into the Graph class. The adjacency matrix
technique is a contiguous implementation of the graph ADT. This representation makes graph operations
efficient but uses a great deal of space. The adjacency lists approach is a linked implementation of the
graph ADT. It makes graph operations nearly as fast as the adjacency list approach but uses much less
space. As a rule, unless a graph is dense or it has a small number of nodes (say, less than a few hundred),
the adjacency lists representation is preferable.

23.9 Review Questions

1. List several elements of the graph ADT carrier set.
2. What is the result of applying the graph ADT operation addEdge() twice with the same

vertices? In other words, if g is a graph and v and w are vertices, what is the result of
addEdge(addEdge(g,v,w),v,w)?

3. How could you iterate over every vertex in a graph?
4. Why is every edge in a graph represented twice in both the adjacency matrix and adjacency

lists representations?

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

181

Graphs

23.10 Exercises

1. Can a vertex be adjacent to itself?
2. If a graph has no edges, can it have any paths? If a graph has edges, does it have a longest

path?
3. How many vertices must there be in the smallest cycle in an undirected graph? How many

in the smallest cycle in a directed graph?
4. In Chapter 16 a tree was defined as a graph with a distinguished vertex r, called the root,

such that there is exactly one simple path between each vertex in the tree and r. Show that
this definition is equivalent to the definition stated in this chapter.

5. Can a graph have more than one spanning tree? Explain.
6. Use the operations of the graph ADT to construct the graph in Figure 2.
7. Represent the graph in Figure 2 using an adjacency matrix.
8. Represent the graph in Figure 2 using adjacency lists. Draw a picture like the one in Figure

5.
9. In Ruby a sparse graph with n vertices represented using an adjacency matrix frequently

uses less than n2 array locations because a matrix in Ruby is an array of arrays. Explain why
this may cause a sparse graph to be represented using less space.

10. Write the Graph class in Ruby.
11. Write an ArrayGraph class in Ruby that represents graphs using an adjacency matrix. Its

initialize() method should accept an argument specifying the number of vertices in
the graph.

12. Write a LinkedGraph class in Ruby that represents graphs using adjacency lists. Its
initialize() method should accept an argument specifying the number of vertices in
the graph. Use the containers/LinkedList class for lists of vertices.

23.11 Review Question Answers

1. The graph ADT carrier set includes the empty graph, which as no vertices and no edges:
<∅, ∅>. The next largest graph has a single vertex and no edges: <{0}, ∅>. The next largest
graphs have two vertices and either no edges or one edge: <{0,1}, ∅>, and <{0,1}, {{0,1}}>.
There are several graphs with three vertices: <{0, 1, 2}, ∅>, <{0, 1, 2}, {{0, 1}}>, <{0, 1, 2},
{{0, 2}}>, <{0, 1, 2}, {{1, 2}}>, <{0, 1, 2}, {{0, 1}, {0, 2}}>, <{0, 1, 2}, {{0, 1}, {1, 2}}>, <{0, 1, 2},
{{0, 2}, {1, 2}}>, <{0, 1, 2}, {{0, 1}, {0, 2}, {1, 2}}>.

2. If g is a graph and v and w are vertices, the result of addEdge(g,v,w) is a graph just like
g except that the edge {v, w} is added to its edge set—call this result h. The result of
addEdge(h,v,w) will be a graph just like h except that the edge {v, w} is added to the edge
set of h. But this edge was already in the edge set of h, so the result is just h. Hence applying
addEdge() to a graph with the same vertices more than once simply returns the same graph
again every time after the first.

3. Iterating over every vertex in a graph g simply requires looping over every integer from 0 to
vertices(g)−1.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

182

Graphs

4. Every edge in a graph is represented twice in both the adjacency matrix and adjacency lists
representations because in each case the representation “indexes” edges by their vertices.
Because each edge has two vertices, each appears twice. Note that we could easily come up
with representations in which an edge appears only once. For example, we could only put
the smaller of the two vertices of an edge into the adjacency array in both the adjacency
matrix and adjacency lists representations. This would save about half the space, but it
would make iterating over the vertices adjacent to a given vertex (which turns out to be a
very important operation) very slow: we would have to search the entire representation to
find all the vertices adjacent to a given vertex. So in this case space is traded for time, and
we use more space to get much faster performance in an essential operation.

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

